Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JMIR Ment Health ; 9(3): e34898, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1770922

ABSTRACT

BACKGROUND: The mobility of an individual measured by phone-collected location data has been found to be associated with depression; however, the longitudinal relationships (the temporal direction of relationships) between depressive symptom severity and phone-measured mobility have yet to be fully explored. OBJECTIVE: We aimed to explore the relationships and the direction of the relationships between depressive symptom severity and phone-measured mobility over time. METHODS: Data used in this paper came from a major EU program, called the Remote Assessment of Disease and Relapse-Major Depressive Disorder, which was conducted in 3 European countries. Depressive symptom severity was measured with the 8-item Patient Health Questionnaire (PHQ-8) through mobile phones every 2 weeks. Participants' location data were recorded by GPS and network sensors in mobile phones every 10 minutes, and 11 mobility features were extracted from location data for the 2 weeks prior to the PHQ-8 assessment. Dynamic structural equation modeling was used to explore the longitudinal relationships between depressive symptom severity and phone-measured mobility. RESULTS: This study included 2341 PHQ-8 records and corresponding phone-collected location data from 290 participants (age: median 50.0 IQR 34.0, 59.0) years; of whom 215 (74.1%) were female, and 149 (51.4%) were employed. Significant negative correlations were found between depressive symptom severity and phone-measured mobility, and these correlations were more significant at the within-individual level than the between-individual level. For the direction of relationships over time, Homestay (time at home) (φ=0.09, P=.01), Location Entropy (time distribution on different locations) (φ=-0.04, P=.02), and Residential Location Count (reflecting traveling) (φ=0.05, P=.02) were significantly correlated with the subsequent changes in the PHQ-8 score, while changes in the PHQ-8 score significantly affected (φ=-0.07, P<.001) the subsequent periodicity of mobility. CONCLUSIONS: Several phone-derived mobility features have the potential to predict future depression, which may provide support for future clinical applications, relapse prevention, and remote mental health monitoring practices in real-world settings.

2.
IEEE J Biomed Health Inform ; 26(1): 423-435, 2022 01.
Article in English | MEDLINE | ID: covidwho-1666255

ABSTRACT

The ability to perform accurate prognosis is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission and readmission from time-series of vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked ensemble platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction by incorporating static features. The model is used to assess a patient's risk of adversity and provides visual justifications of its prediction. Results of three case studies show that the model outperforms existing platforms in ICU and general ward settings, achieving average Precision-Recall Areas Under the Curve (PR-AUCs) of 0.891 (95% CI: 0.878-0.939) for mortality and 0.908 (95% CI: 0.870-0.935) in predicting ICU admission and readmission.


Subject(s)
Electronic Health Records , Machine Learning , Hospitalization , Humans , Length of Stay , ROC Curve , Retrospective Studies
3.
Pattern Recognit ; 123: 108403, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1482848

ABSTRACT

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

4.
JMIR Res Protoc ; 10(10): e28873, 2021 Oct 07.
Article in English | MEDLINE | ID: covidwho-1456205

ABSTRACT

BACKGROUND: Chronic lung disorders like chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by exacerbations. They are unpleasant for patients and sometimes severe enough to cause hospital admission and death. Moreover, due to the COVID-19 pandemic, vulnerable populations with these disorders are at high risk, and their routine care cannot be done properly. Remote monitoring offers a low cost and safe solution for gaining visibility into the health of people in their daily lives, making it useful for vulnerable populations. OBJECTIVE: The primary objective is to assess the feasibility and acceptability of remote monitoring using wearables and mobile phones in patients with pulmonary diseases. The secondary objective is to provide power calculations for future studies centered around understanding the number of exacerbations according to sample size and duration. METHODS: Twenty participants will be recruited in each of three cohorts (COPD, IPF, and posthospitalization COVID). Data collection will be done remotely using the RADAR-Base (Remote Assessment of Disease And Relapse) mobile health (mHealth) platform for different devices, including Garmin wearable devices and smart spirometers, mobile app questionnaires, surveys, and finger pulse oximeters. Passive data include wearable-derived continuous heart rate, oxygen saturation, respiration rate, activity, and sleep. Active data include disease-specific patient-reported outcome measures, mental health questionnaires, and symptom tracking to track disease trajectory. Analyses will assess the feasibility of lung disorder remote monitoring (including data quality, data completeness, system usability, and system acceptability). We will attempt to explore disease trajectory, patient stratification, and identification of acute clinical events such as exacerbations. A key aspect is understanding the potential of real-time data collection. We will simulate an intervention to acquire responses at the time of the event to assess model performance for exacerbation identification. RESULTS: The Remote Assessment of Lung Disease and Impact on Physical and Mental Health (RALPMH) study provides a unique opportunity to assess the use of remote monitoring in the evaluation of lung disorders. The study started in the middle of June 2021. The data collection apparatus, questionnaires, and wearable integrations were setup and tested by the clinical teams prior to the start of recruitment. While recruitment is ongoing, real-time exacerbation identification models are currently being constructed. The models will be pretrained daily on data of previous days, but the inference will be run in real time. CONCLUSIONS: The RALPMH study will provide a reference infrastructure for remote monitoring of lung diseases. It specifically involves information regarding the feasibility and acceptability of remote monitoring and the potential of real-time data collection and analysis in the context of chronic lung disorders. It will help plan and inform decisions in future studies in the area of respiratory health. TRIAL REGISTRATION: ISRCTN Registry ISRCTN16275601; https://www.isrctn.com/ISRCTN16275601. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/28873.

5.
J Med Internet Res ; 22(9): e19992, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-803042

ABSTRACT

BACKGROUND: In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. OBJECTIVE: We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)-base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. METHODS: We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. RESULTS: We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. CONCLUSIONS: RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/psychology , Data Collection , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/psychology , Smartphone , Social Isolation , Telemedicine , Wearable Electronic Devices , Adolescent , Adult , Aged , Aged, 80 and over , Body Mass Index , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Denmark/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Mobile Applications , Monitoring, Physiologic , Netherlands/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Social Media , Spain/epidemiology , United Kingdom/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL